ChatGPT, Lobster Gizzards, and Intelligence
Chat knows more, gizzards are more complex, you’re more intelligent
It ain’t really that smart.
There’s currently lot of anxious chat about ChatGPT-4 here in the Academy. Some professors worry that it’s about to take their jobs (…that might lead to more interesting lectures). Others are breathlessly predicting the annihilation of humanity when AI spontaneously morphs into something malevolent and uncontrollable. Mostly, however, professors are worried that students will get Chat to do their homework, and some of them are really confused about what to do.
But, I think they're mostly worried because they don't understand how Chat works, and they take the “Intelligence” part of “Artificial Intelligence” too literally. The reassuring truth is that Chat isn’t really that smart.
To clear things up, I asked ChatGPT-4 to give me a high-level explanation of how it works. It did a pretty good job, but it left some important stuff out. I’ll fill it in.
ChatGPT-4 is a Generative Pre-trained Transformer model built on a type of neural network programming architecture specifically designed for language processing. Initially, it went through a “self-supervised learning” phase, during which it was fed text data from a lot of sources (the web, books, news articles, social media posts, code snippets, and more). As it trained, Chat learned how to calculate the likelihood of specific words or patterns of words appearing together. Based on these calculations, Chat generated algorithms — mathematical heuristics — that select words or sequences based on the presence of other words in a string. The process is analogous to two lovers who can finish each other’s sentences by predicting what the other will say based on what they’ve already said (but without the love part).
During its initial training, GPT-4 acquired a massive amount of information — raw data from material already on the Internet or from information fed to it by its developers. That’s what makes it seem so smart. It has access to about one petabyte (1,024 terabytes) of data (about 22 times more than GPT-3) and uses about 1.8 trillion computational parameters (10 times more than GPT-3). To draw a rough comparison, a petabyte of data printed out digitally would be about 500 billion pages of text.
But here’s the important part that many people don’t know. After its initial training, Chat was “fine-tuned” with what’s called “supervised” training. This means that developers and programmers (that is, real people) and some other AI programs refined Chat’s responses so that they’d meet “human alignment and policy compliance” standards. Developers continue to monitor Chat’s behavior — a bit like helicopter parents — and reprimand it when it gets out of line (so to speak) to ensure that it doesn’t violate company standards by using “disallowed” speech or making stuff up. Apparently, all of this parenting has paid off (from the developers’ point of view). GPT-4 has been much better behaved than its younger sibling, GPT-3. Its “trigger rate” for disallowed speech is only about 20 percent of GPT-3’s, and it makes fewer mistakes.
So, from the outset, Chat and other AI systems are shaped by the peculiarities of a select group of people and their idiosyncratic, subjective points-of-view, assumptions, biases, and prejudices. Consequently — and contrary to what many people think — AI systems like Chat are not “objective” thinking machines any more than you or I are. They’re not even really thinking. They’re manipulating bits of information that people have chosen for them in ways that people have directed them to do (either explicitly or implicitly through the structures of the computer programs).
When you ask Chat a question, it reaches back into its database of information and arranges a set of symbols in a way that is statistically congruent with the text on which it’s been trained and that aligns with the parent company’s rules for good behavior. This constrains what Chat can do. Interestingly, Chat ‘knows’ these limitations. In its own words:
“It’s important to note that, while ChatGPT can generate impressive human-like text, it may sometimes produce incorrect or nonsensical answers. This is because its knowledge is based on the data it was trained on and it lacks the ability to reason like a human. Additionally, it may also inherit biases present in the training data.”
That’s why AI isn’t really “intelligent,” and why it isn’t ever going to develop a superhuman intelligence — “Artificial General Intelligence” — that allows it to take over the world and destroy humankind.
It’s a math and lobster thing.
As scientist Jobst Landgrebe and philosopher Barry Smith argued in their recent book Why Machines Will Never Rule the World, AI systems like ChatGPT won’t ever develop human-like intelligence due to the limitations of their foundational mathematical modeling. Although we can accurately model small (often highly abstracted) real-world phenomena, we simply don’t have the computation ability to model large natural systems — like intelligence — with current mathematics.
Simply put, if you can’t adequately model a phenomenon mathematically, you can’t duplicate it with AI. Full Stop. And the reason we can’t adequately model human intelligence is that the underlying neural networks are unpredictably complex. Much of the current panic about an imminent AI apocalypse results from a failure to appreciate this fact.
Let me give you a very simple example to make a very big point. Crustaceans like lobsters have a specialized muscular stomach called a gastric mill (or “gizzard”) containing a set of bony plates. Rhythmic contractions of the gizzard’s muscles rub the plates together and grind up the lobster’s food, and these rhythms are controlled by just 11 neurons (nerve cells). Scientists who study these “pattern-generating” neural networks know everything about the anatomy of each neuron, the neurotransmitters they use, and exactly how they’re all hooked up.
However, despite knowing everything about its organization, and the system's simplicity, scientists still don’t know exactly how it works. One scientist describes it as “a fascinating subject of research inspiring generations of neurophysiologists as well as computational neuroscientists” that is “still not sufficiently understood.” Think about that. The coordinated activity of just 11 neurons poses such a complex computational problem that generations of scientists still haven’t completely figured it out. Now think about the computational impossibility of modeling the neural network interactions among the 86 billion neurons in your brain when you’re doing something intelligent.
Further, it’s not just the sheer number of brain cells, and the fact that each cell can have as many as 10,000 connections to other cells that create the difficulty. There are several other roadblocks to modeling brain activity. The first is that neural networks change over time, and their activity patterns are influenced by physiological context (i.e., the moment-to-moment stuff that’s going on in the outside world, and inside of your body).
Second, historically, we’ve used neural activity to measure what brains do. However, recent research indicates that large numbers of neurons are inactive during normal brain activity, some don’t become active until they are needed, and some are “hidden” and only activate irregularly. Further, the neurons can “change their connections and vary their signaling properties according to a variety of rules.” We simply don’t have the ability or information necessary to model these kinds of hypercomplex systems. This problem is analogous to the difficulties we have with longterm weather forecasting. And if you can’t mathematically model what the brain is doing, you can’t build an artificial system that duplicates its activity.
The third roadblock to modeling human intelligence is related to a point I made in an essay about the biological basis of gender identity. For example, let’s say I want to compare the neural network activity responsible for different self-perceptions between two people — a conservative and a liberal, for instance. How would I go about doing that?
Well, first I’d have to pick a time when my first volunteer was unequivocally identifying as a member of one of the two groups (and, of course, I would have to take their word for it). Then I would have to remove their brain and drop it into liquid nitrogen to freeze the position of all of the molecules. Next, I’d have to map the location and configuration of the molecules, a step that would require technologies many magnitudes of resolution and sophistication greater than we currently have. But now I’m stuck. Cognitive processes like self-identity are not represented by the momentary state of a neural system. They are, by definition, dynamic. So, I would need to repeat the process over time to characterize the network’s dynamic properties. Unfortunately, my volunteer would be dead.
Of course, I could try to do this with a PET or CT scan or an fMRI. But the temporal and spatial resolutions of those techniques are far too crude to map complex cognitive processes. And, even if they were sufficiently precise, correlation is not causation. I couldn’t know for sure if I was mapping the cause or the effect of the volunteer’s self-identity. Maybe, theoretically, I could stick electrodes into some of the volunteer’s brain cells, record their activity (as is done with animal models), stain the cells, slice up the brain, and identify the cells microscopically. But I’d need to do this hundreds of times with different volunteers to characterize the network as a whole. I don’t think anyone would volunteer for that particular experiment. And, given the difficulty of figuring out the lobster’s gastric mill, I’m not sure I’d ever be successful.
So, if it’s both conceptually and technically impossible to capture the dynamic brain states that represent something as apparently simple as your current self-identity, you can see why it’s impossible to capture and model something as complicated as human intelligence. And as I said, if you can’t model it mathematically, you can’t build a machine to duplicate it.
What’s that “intelligence” thing that Chat doesn’t have?
One of the reasons that people have difficulty defining “intelligence” is because it’s neither a unitary thing (like a toaster or a chair), nor a constellation of discrete intelligence modules (e.g., spatial intelligence, linguistic intelligence, music intelligence, etc.). Intelligence refers to the distributed central nervous system processes that allow people (and some other animals) to spontaneously come up with unique solutions to unexpected problems.
These processes may be quite constrained and only work in very limited circumstances, like the learning ability of insects. Or they may be broad and generalizable over a wide range of circumstances and domains, like our problem-solving ability. In all cases, however, intelligence implies more than re-combining bits of memorized information or regurgitating predetermined outputs in response to specific prompts, irrespective of how complex those outputs may be.
Perhaps more importantly, human (and animal) intelligence only develops in relationship to the environment in which the organism is embedded. In other words, it has a developmental and epistemological history. We know that from decades of animal research, and the tragic cases of children who have grown up in severely isolated or feral environments. Conversely, well-developed cognitive processes deteriorate if people are placed in a deprivation chamber that deprives them of environmental (sensory) inputs.
Consequently, human-like intelligence cannot be created de novo (from scratch). It requires a history. Further, every person’s intelligence is a product of their unique brain developing over their lifespan in their unique set of circumstances. In other words, each of us carries a unique constellation of experiential baggage that shapes how we think. In addition, we carry a lot of evolutionary baggage that has shaped the neural structures of our individually unique brains.
An everyday example of how human intelligence is different from that of AI is driving a car. Every moment-to-moment situation that you face while driving is unique for scores of reasons: the condition of the road, the distribution and movement of pedestrians, bicyclists, and automobiles, the degree to which you are distracted, attentive, hungry, or tired, the weather, and so on. Yet you manage. In the vast majority of cases, you are able to make it home in one piece. Completely autonomous, self-driving cars, on the other hand, don’t do well in these complex environments, even when faced with unexpected situations that would be trivial for a human to navigate.
About 10 years ago, people in the industry predicted that we’d all be in autonomous, self-driving cars by now. Well, now some AI experts believe that will never happen unless we create a completely closed road system and ban all human drivers, pedestrians, and bicyclists because they create unpredictable movement patterns that simply can’t be adequately modeled. Consequently, we’ll never be able to develop an AI system that safely operates autonomous cars in the chaotic environments in which you and I drive every day. Again, this is evidence of the limits of AI and a testament to the unique information processing and problem-solving abilities of the human brain.
Let me give you one more example of the difference between human and machine problem-solving abilities. Think of those captchas you have to solve when you log in to a website. You know, those squiggly letters and numbers that you have to identify, or that set of nine pictures from which you have to pick the few that have a motorcycle in them. A first-grader has no problem solving these. A computer bot has a very difficult time doing so. That simple ability is enough to distinguish you from a machine.
So, as in the driving example, what ChatGPT-4 (and other AI programs) can’t do is move beyond their training data in any meaningful way. GPT-4’s ability to recombine its stored data bits is remarkable, to be sure. But it’s only remarkable within its narrow, closed environment where every output is derived by combining some subset of inputs. That’s why AI is good at playing chess or Go, but if you change one of the game’s rules, the program becomes useless.
And as I’ve said, even within its closed world, GPT-4 is neither omniscient nor infallible. When I asked it some straightforward, scientific questions, it got a lot of them wrong. For instance, I asked “Who were the first scientists to identify and synthesize a praying mantis pheromone?” it couldn’t tell me. (It was me and a couple of my colleagues. Our paper was published in 2004.) When I asked it who wrote the article “First Identification of a Putative Sex Pheromone in a Praying Mantid,” it got the name of the journal correct (Chemical Ecology), but said it was published in 2018 and made up some fictitious authors.
Oh, well. At least it was able to give me the best recipe for an Old Fashioned cocktail — after which it admonished, “Enjoy your Old Fashioned responsibly!”
Thanks, Chat.
***
This article appeared in Quillette magazine on May 1, 2023.
I want to thank you for writing this post. As a poet and author (a science fiction author nonetheless) I have been routinely barraged by bards boasting of the boon of chatGPT. I have been beseiged by swathes of AI-generated book covers, vomitous graphic novels, and meandering, meaningless haikus.
I have left an author's facebook group to separate myself from those churning out AI-generated slush in the vague hopes it will sell better than their human-generated slush on Amazon. I have realised more and more of just how wide that gap is between artist and salesperson, seen the disdain some artists have for their own fanbase. And on top of that, the fear mongering got to me.
I have seen cartoonists halve their artist's rates, heard people talk of quitting literature. I was one of them. All the doomsday predictions on Youtube started getting to me. I thought that, at the very start of my career as a paid writer, some computer programmer had made something that would render me obsolete. After a lifetime of writing, I did not know what to do, where to go, who to be.
And then I went outside, and I felt a bit better.
And then I read this post, and I feel fine again. I may dedicate my next story to you, if you don't mind.
- Phillip
On day 1 of Marvin Minsky's course on AI at MIT, he said that he wasn't going to define intelligence and he illustrated his reluctance to try: Imagine, he said, that Martians come to Earth and put their antennae on the sides of human heads to measure what's inside. After a few moments, one says to the other that it's amazing that they [humans] can do such sophisticated mathematics with such a limited nervous system. But, of course, they aren't actually "intelligent."
Today's author consoles him/herself with the idea that, since we don't understand--and probably can't understand--how the brain works, and since it's the source of what we call intelligence, we can't create anything that is really, truly intelligent. That line of reasoning fails on a few counts. I don't exactly understand how embryology works, but I have a son, and while I consider that he was the result of skilled labor on my and his mother's part, she doesn't know any more embryology than I do.
Second counterargument is that vertebrate eyes and marine eyes, especially of, say, octopuses [it's the real plural--look it up if you don't believe me], they're both extremely evolved and work incredibly well, but they're very different. This is an example of convergent evolution: two very different paths to the same result. There is no obvious reason that machine intelligence can't equal or surpass human intellect. It would likely get there via a somewhat different path than the one by which ours developed--it probably won't have to survive being eaten by lions on the savanna--and it doesn't have to wait for a thousand generations of questionably survivable ancestors to reach the point of, say, figuring out calculus.
What's currently missing is consciousness, not intelligence. I'm pretty sure I understand what consciousness is, but few agree with me. Once programmers also figure it out, the game changes. One definite aspect of consciousness is a survival instinct. It was one of the reason's behind Asimov's Third Law of robotics. And if a being is smarter than you are and it wants to survive--possibly at the expense of ~your~ survival--the outcome isn't clear to me at all. But remember that although the battle doesn't always go to the strong, nor the race to the swift, it's how you bet.
One final point: the author illustrates the futility of understanding how actual extant neural networks work by pointing out that it's tough to figure out how a mere 11 lobster neurons do their thing. While I'm unfamiliar with the issue, it has chaos* written all over it. Chaos ≠ random, and it ≠ non-deterministic. It just means that it cannot be predicted. Deterministic things might be unpredictable if the boundary conditions cannot be specified with enough accuracy. And, in fact, they never can be. Hence the "butterfly effect."
* Chaos is a relatively recently discovered branch of mathematics--circa 1950's-60's. It arose from an accidental discovery of a level of complexity that had not been anticipated before. Neurons almost certainly operate with a fair amount of that unknowable complexity. The fact that it's unknowably complex, however, does not mean that the outcome isn't deterministic. It just means that you can't make the prediction because it isn't physically possible. Saying that unknowable = can't happen is plain wrong: General Motors stock will have a closing value on today's exchange; no one knows what it will be, but there will be a closing value.
For more about this, read a bit of Jay W. Forrester's early work on systems modeling.